ecsgame/Util/geometry.h

114 lines
3.0 KiB
C
Raw Normal View History

2021-01-12 18:38:16 +01:00
#pragma once
#include <vector>
// Forward declarations
struct Triangle;
struct Vector {
Vector(float coordinates[3]) : c(coordinates) {}
Vector(float x, float y, float z) : c(new float[3]{x, y, z}) {}
// Avoid having to write vector.c[index], instead allow vector[index]
float operator[](int i) const { return c[i]; }
float &operator[](int i) { return c[i]; }
Vector operator+(const Vector &other) const {
return Vector(c[0] + other.c[0], c[1] + other.c[1], c[2] + other.c[2]);
}
Vector operator-(const Vector &other) const {
return Vector(c[0] - other.c[0], c[1] - other.c[1], c[2] - other.c[2]);
}
Vector operator*(float scalar) const {
return Vector(c[0] * scalar, c[1] * scalar, c[2] * scalar);
}
Vector cross(const Vector &other) {
2021-01-12 18:38:16 +01:00
return Vector(c[1] * other[2] - c[2] * other[1], c[2] * other[0] - c[0] * other[2],
c[0] * other[1] - c[1] * other[0]);
}
float dot(const Vector &other) { return c[0] * other[0] + c[1] * other[1] + c[2] * other[2]; }
float *c;
};
struct Point {
Point(Vector pos, Triangle *triangle) : pos(pos), triangle(triangle) {}
Vector pos;
Triangle *triangle;
};
struct Triangle {
Triangle(Vector p1, Vector p2, Vector p3) : p1(p1), p2(p2), p3(p3) {}
std::vector<Point *> create_point_objects() {
return std::vector<Point *>{new Point(p1, this), new Point(p2, this), new Point(p3, this)};
}
Vector p1;
Vector p2;
Vector p3;
};
struct Node {
Node(int axis, Point *point, Node *left, Node *right)
: axis(axis), point(point), left(left), right(right) {}
int axis;
Point *point;
Node *left;
Node *right;
};
struct Ray {
Ray(Vector origin, Vector direction) : origin(origin), direction(direction) {}
Vector origin;
Vector direction;
bool intersects_triangle(Triangle *triangle) {
// Ray-triangle-intersection with the MöllerTrumbore algorithm
// https://en.wikipedia.org/wiki/M%C3%B6ller%E2%80%93Trumbore_intersection_algorithm
const float EPSILON = 0.0000001;
Vector p1 = triangle->p1;
Vector p2 = triangle->p2;
Vector p3 = triangle->p3;
Vector edge1 = p2 - p1;
Vector edge2 = p3 - p1;
Vector h = direction.cross(edge2);
float a = edge1.dot(h);
if (a > -EPSILON && a < EPSILON) return false; // This ray is parallel to this triangle.
float f = 1.0 / a;
Vector s = origin - p1;
float u = f * s.dot(h);
if (u < 0.0 || u > 1.0) return false;
Vector q = s.cross(edge1);
float v = f * direction.dot(q);
if (v < 0.0 || u + v > 1.0) return false;
// At this stage we can compute t to find out where the intersection point is on the
// line.
float t = f * edge2.dot(q);
if (t > EPSILON) {
return true;
} else {
// This means that there is a line intersection but not a ray intersection.
return false;
}
}
};